Double regularization medical CT image blind restoration reconstruction based on proximal alternating direction method of multipliers
نویسندگان
چکیده
To solve the problem of CT image degradation, a double regularization CT image blind restoration reconstruction method was proposed. The objective function including both a clear image and point spread function was established. To avoid the over-smoothing phenomenon and protect the detail, the objective function includes two constraint regularization terms. They are total variation (TV) and wavelet sparsity respectively. The objective function was solved by the alternating direction multiplier method (ADMM), and the optimal solution was obtained. Firstly, the CT image blind restoration reconstruction was decomposed into two sub-problems: reconstructed image estimation and point spread function estimation. Furthermore, each sub-problem can be solved by the proximal alternating direction method of multipliers. Finally, the CT image blind restoration reconstruction was realized. The experimental results show that the proposed algorithm takes into account the degradation effect of projection data, and the proposed algorithm is superior to other existing algorithms in the subjective visual effect. At the same time, in the aspect of objective evaluation, the proposed algorithm improves the objective image quality metrics such as peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), and universal image quality index (UIQI).
منابع مشابه
Convergent Iterative CT Reconstruction With Sparsity-Based Regularization
Statistical image reconstruction for X-ray CT can provide improved image quality at reduced patient doses. An important component of statistical reconstruction methods is the regularizer. There has been increased interest in sparsity-based regularization, typically using l1 norms. The non-smooth nature of these regularizers is a challenge for iterative optimization methods and often causes slow...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملModel-based iterative tomographic reconstruction with adaptive sparsifying transforms
Model based iterative reconstruction algorithms are capable of reconstructing high-quality images from lowdose CT measurements. The performance of these algorithms is dependent on the ability of a signal model to characterize signals of interest. Recent work has shown the promise of signal models that are learned directly from data. We propose a new method for low-dose tomographic reconstructio...
متن کاملEffective Alternating Direction Optimization Methods for Sparsity-Constrained Blind Image Deblurring
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered...
متن کاملNUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT
Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Image and Video Processing
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017